

Lemon Markets v1: The Modular
Protocol for Synthetic Asset

Perpification

Lemon Markets Team

hello@lemonmarkets.finance

January 20, 2026

Abstract

Lemon Markets is a modular, decentralized protocol enabling the
synthetic "perpification" of arbitrary value-bearing financial instruments. By
architecturally decoupling market execution from protocol-wide liquidity,
Lemon Markets facilitates the creation of perpetual exposure for any asset
with a verifiable price feed. The protocol utilizes a tiered liquidity model
comprising a protocol-owned Buffer Pool and a provider-funded Insurance
Pool to achieve high capital efficiency while isolating systemic tail-risk. Every
position is encapsulated as a unique, non-fungible token (NFT), enabling
secondary market transferability and native composability within the DeFi
ecosystem.

mailto:hello@lemonmarkets.finance

2. Disclaimer and Scope of Interpretation

2.1 Non-Financial Advice

This document constitutes a technical protocol specification and does not
serve as financial, investment, legal, or regulatory advice. The Lemon Markets
protocol is a decentralized software system.

2.2 Risk Acknowledgment

Participants (Traders and Liquidity Providers) acknowledge that:

●​ Market Risk: Synthetic assets are subject to extreme volatility and price
gaps.

●​ Smart Contract Risk: Software vulnerabilities may exist; the protocol is
under active development.

●​ Oracle Risk: The protocol is dependent on external data signatures;
inaccuracies or liveness failures can lead to absolute loss of funds.

●​ Liquidity Risk: During extreme market-wide drawdown, the Insurance
Pool may be depleted, resulting in capped payouts or insolvency.

3. Problem Statement and Motivation

3.1 Liquidity Fragmentation

Traditional Perp DEXs require deep, native liquidity for every asset pair. This
fragments capital and limits the variety of tradable assets to high-cap
cryptocurrencies.

Our team has decades of combined experience working in and with DeFI
protocols, seeing the need for a defragmentalized-capital protocol for
synthetic asset exchange.

3.2 Inventory Constraints

Borrow-based margin models are limited by physical asset supply. If a protocol
has no underlying "token A" to lend, it cannot support a short position on
token A.

3.3 The Lemon Paradigm: Modular Perpification

Lemon Markets introduces a "Dumb Market, Smart Manager" model. By
separating the logic into specialized modules, it achieves:

1.​ Permissionless Growth: New Market contracts can be deployed for any
ticker without modifying the core liquidity logic.

2.​ Pure Synthetics: No borrowing, no inventory, no interest rates.

3.​ Tiered Backstops: Multi-layer protection for Liquidity Providers (LPs).

Lemon Markets is built to ensure that any synthetic financial instrument (or
asset) can be exchanged or traded as long as there are willing participants to
that trade and the protocol achieves this through its organized and
decentralized manager system.

4. Modular Architecture

The protocol is "modular" because it separates execution, risk management,
and liquidity into independent, interoperable contracts. This allows for
horizontal scaling where new assets are added by deploying new instances of
a specific module rather than upgrading the entire system.

4.1 Component Decomposition

4.2 Functional Layers
●​ The Orchestrator (SyntheticPerpetualRouter): The single user entry point.

It manages the handshakes between the MarketManager and
PositionManager.

●​ The Registry (MarketManager): The "Brain" of the protocol. It maintains a
registry of all active Market contracts and coordinates the PnL/Fee
waterfall across the Vault.

●​ The Market Instance (Market): A lightweight contract holding state for a
specific asset pair. It tracks , , and localized liquidity. 𝑀𝑎𝑟𝑔𝑖𝑛 𝑂𝑝𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

●​ The Execution Engine (PositionManager): An ERC-721 contract that
manages the position lifecycle and ownership.

●​ The Liquidity Layer (Vault): Manages the Insurance Pool (LP funds) and
Buffer Pool (protocol reserves).

5. Market and Position Model

5.1 Position Representation

Positions on Lemon Markets are stored as non-fungible data structures
containing the following immutable and mutable state:

 Description

Trader The wallet owner of the position NFT.

Token Symbol The market identifier (e.g., "BTC", "ETH").

Direction Boolean flag indicating Long (True) or Short (False).

Margin The current collateral backing the position (in
collateralToken).

Leverage The leverage multiplier applied to the margin.

Entry Price The aggregate entry price of the position.

Liquidation Price The calculated price at which the position is
flagged for liquidation.

Take Profit / Stop Loss Optional trigger prices for automated closing.

Open Timestamp The block time when the position was created.

Is Active Status flag determining if the position contributes
to Open Interest.

5.2 Position Lifecycle

6. Trading Mechanics and Economic Flows

6.1 Profit and Loss (PnL) Implementation

PnL is calculated linearly relative to price movement with great care in
implementation is taken to ensure precision by performing multiplication
before division.

​𝑃𝑛𝐿 = 𝑆𝑖𝑧𝑒 𝑥 Δ𝑃. 𝑒𝑛𝑡𝑟𝑦
Where 𝑆𝑖𝑧𝑒 = 𝑀𝑎𝑟𝑔𝑖𝑛 𝑥 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒

6.2 The Fee Waterfall and Distribution

The protocol implements a tiered fee structure to ensure sustainable
operations and LP compensation.

1.​ Opening Fee (fO):

o​ Rate: Defined by OPENING_FEE_RATE (20 bps).

o​ Logic: fO . = 𝑀𝑎𝑟𝑔𝑖𝑛 𝑥 𝑅𝑎𝑡𝑒

o​ Distribution: Deducted from initial margin and transferred to the
TreasuryWallet.

2.​ Referral Fee (fR):

o​ Rate: 10% of fO (DEFAULT_REFERRAL_FEE_RATE = 1000 bps of
Opening Fee).

o​ Logic: If a valid referrer is provided during openPosition, a
percentage of the Opening Fee is redirected to the referrer.

3.​ Closing Fee (fC):

o​ Rate: Defined by CLOSING_FEE_RATE (200 bps).

o​ Logic: Applied only to profitable trades (). 𝑃𝑛𝐿 > 0

4.​ Duration Fee (fD):

o​ Rate: Hourly rate (bps) per market.

o​ Logic: 𝑓𝐷 = 𝑀𝑎𝑟𝑔𝑖𝑛 𝑥 𝑅𝑎𝑡𝑒 𝑥 𝑇𝑖𝑚𝑒𝑂𝑝𝑒𝑛

o​ Distribution: Collected during closePosition and used to replenish
the Vault liquidity.

7. Risk Management and Exposure

7.1 Dynamic Liquidation

A position is eligible for liquidation when the maintenance margin is breached.
The protocol uses an 80% threshold (). 𝐿𝐼𝑄𝑈𝐼𝐷𝐴𝑇𝐼𝑂𝑁_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 = 8000

P. (𝑙𝑖𝑞, 𝐿𝑜𝑛𝑔) = 𝑝𝐸 𝑥 (1 − 0. 8/𝐿)

P. (𝑙𝑖𝑞, 𝑆ℎ𝑜𝑟𝑡) = 𝑝𝐸 𝑥 (1 + 0. 8/𝐿)

7.2 Exposure Throttling and Skew Management

Each Market instance tracks its own Long/Short skew. The MarketManager
enforces global limits by checking the IVault.maxPositionDivider().

Accounting Invariants:

●​ totalLongMargin: Cumulative margin of all active long positions.

●​ totalShortMargin: Cumulative margin of all active short positions.

●​ realLiquidity: Total collateral tokens physically present in the Market
contract.

8. Liquidity Architecture and Solvency

8.1 Dual-Tier Payout Waterfall

Lemon Markets ensures trader payouts through a hierarchical liquidity
structure implemented in MarketManager.removePositionMarginAndPayout.

Settlement Execution Flow:
1.​ Local Settlement: The Market contract first attempts to pay the trader

from its realLiquidity.

2.​ Vault Rebalancing: If realLiquidity < payout, the MarketManager triggers
executeVaultRequest.

o​ Priority 1 (Buffer): Request from Vault’s buffer liquidity.

o​ Priority 2 (Insurance): If Buffer is insufficient, request from Vaul’s
insurance liquidity.

3.​ Loss Recycling: When a trader takes a loss, the loss amount (up to the
full margin) is sent to the Vault via executeVaultBufferDeposit or
executeVaultInsuranceDeposit.

8.2 The LP Share Model

Liquidity Providers (LPs) receive VaultToken (ERC-20) representing their
proportional claim on the Insurance Pool.

●​ Share Valuation: The share price increases as fees (Duration Fees, Closing
Fees) and Liquidation Surpluses are added to the pool.

●​ Risk Profile: LPs assume the role of the "Counterparty of Last Resort." In
extreme market conditions where Buffer Pool is exhausted, LPs absorb
winning trader PnL.

9. Smart Contract Inventory and Constants

9.1 Contract Responsibilities
●​ SyntheticPerpetualRouter: Manages and interacts with clients (native or

not), and coordinates complex actions like modifying positions and closing
limit orders.

●​ MarketManager: Stores the Market registry. It is the only contract
authorized to call executeVaultRequest on the Vault.

●​ PositionManager: Owns the Position mapping. It performs EIP-712 style
signature verification for oracle data. This is important for secure
onchain verification of offchain oracle data.

9.2 Key Protocol Constants

Constant Value Description
MIN_TRADING_MARGIN 1 * 10^6 Minimum collateral

required to open a
position (e.g., 1 USDC).

MAX_TRADING_MARGIN 1,000,000 * 10^6 Maximum collateral per
position.

OPENING_FEE_RATE 20 (0.2%) Fee charged on opening
a position.

KEEPER_FEE_RATE 10 (0.1%) Fee paid to keepers for
executing
limit/liquidations.

10. Security and Threat Model

10.1 Trust Boundaries and Admin Authority
●​ Oracle Integrity: The protocol trusts a centralized adminSigner. All price

data must be signed with a valid nonce to prevent replay attacks.

●​ Emergency Controls: In the case of an emergency the protocol has a
designated owner to avert risks. The Owner can call pause() on the Router
to halt all trading activity.

●​ Upgradeability: The system uses the UUPS (Universal Upgradeable Proxy
Standard). Logic shifts are possible but restricted to the ProxyAdmin.

10.2 Attack Vectors and Mitigations
●​ Front-Running: Prevented by the requirement of a recent oracle

signature in the same transaction as the position request.

●​ Price Manipulation: Prevented by referencing the adminSigner which
aggregates off-chain data, rather than relying on onchain CLOB/AMM
prices which are easier to manipulate.

11. Protocol Scope, Constraints, and Evolution

11.1 Current Scope (V1)

In its current iteration (V1), Lemon Markets is restricted to:

●​ Stablecoin Standard: Internal accounting is strictly in the collateralToken
(e.g., USDC).

●​ Synthetic Only: No physical delivery or spot interaction.

●​ Centralized Oracles: Reliance on the adminSigner for all market prices.

11.2 Hard Constraints
1.​ No Borrowing: Positions are not funded by lenders. Leverage is a

synthetic multiplier backed by protocol-wide liquidity.

2.​ Fixed Settlement Ticks: Settlement is only possible at prices signed by
the authorized oracle.

3.​ Maximum Leverage: Hard-coded limit of 100x.

4.​ Zero-Sum-Plus-Fees: Every profit is compensated by either another
trader's loss or the Vault, minus protocol fees.

11.3 Active Research Areas
●​ Asymmetric Funding Rates: Transitioning to dynamic funding rates

 to incentivize balance when one side dominates (𝐿𝑜𝑛𝑔 − 𝑆ℎ𝑜𝑟𝑡) 𝑥 𝑅𝑎𝑡𝑒
the market.

●​ Decentralized Oracle Networks (DONs): Moving towards a multi-signer
threshold model or integrating Pyth/Chainlink.

●​ Cross-Chain Settlement: Implementing a bridge-aware PositionManager to
allow users to move their position NFT between EVM-compatible chains.

	
	Lemon Markets v1: The Modular Protocol for Synthetic Asset Perpification
	Abstract
	2. Disclaimer and Scope of Interpretation
	2.1 Non-Financial Advice
	2.2 Risk Acknowledgment

	3. Problem Statement and Motivation
	3.1 Liquidity Fragmentation
	3.2 Inventory Constraints
	3.3 The Lemon Paradigm: Modular Perpification

	4. Modular Architecture
	4.1 Component Decomposition
	4.2 Functional Layers

	5. Market and Position Model
	5.1 Position Representation
	5.2 Position Lifecycle

	
	6. Trading Mechanics and Economic Flows
	6.1 Profit and Loss (PnL) Implementation
	6.2 The Fee Waterfall and Distribution

	7. Risk Management and Exposure
	7.1 Dynamic Liquidation
	7.2 Exposure Throttling and Skew Management

	8. Liquidity Architecture and Solvency
	8.1 Dual-Tier Payout Waterfall
	Settlement Execution Flow:

	8.2 The LP Share Model

	9. Smart Contract Inventory and Constants
	9.1 Contract Responsibilities
	9.2 Key Protocol Constants

	10. Security and Threat Model
	10.1 Trust Boundaries and Admin Authority
	10.2 Attack Vectors and Mitigations

	11. Protocol Scope, Constraints, and Evolution
	11.1 Current Scope (V1)
	11.2 Hard Constraints
	11.3 Active Research Areas

